这种非晶材料,不说减少50%的损耗,就算减少个20%,放在庞大的总量面前,换算成经济价值,都是一笔天文数字。
东西虽好,但因为暂时没法大规模生产,所以还是同样的缺点:贵!
其三,其中一架飞船还将携带另一件秘密武器----100公斤的单分子流体平面薄膜!
八架圆心飞船如果顺利在太空中完成拼接,就将形成太空站的中心管理区。在太空站的整体设计中,至少这片区域的能源要实现自给自足,而单分子流体平面薄膜就是实现这个目标的重要拼图。
这款产品属于土生土长的地球科技,由公司科研组在半年前测试电池储能新型材料的过程中发现。研究发现,这种单分子流体材料在真空环境中,可以吸收太阳能并转化为电能。最重要的是,在实验室环境下,其对太阳能的转化率高达58%。
这个数据就非常惊人了。目前世界上所使用的太阳能面板,以材料区分主要分为多晶、单晶、非晶硅三大类,在最理想状态下----也就是电池纯度和整合度做到最佳,地球实验室数据也就在25%左右,在太空的真空环境中可以达到37%。37和58,这不是简单的数值增长,而是全新材料引起的质变式跨越。
可惜的是,这种单分子流体材料无法在地球正常环境下使用,其光能高转换的特性只有在真空环境下才能出现,不像硅基材料的太阳能面板,在日常使用中虽然转化率不高只有12%到17%,每平米大约需要6到8个小时的光照才能产出一度电,但是装上就能用啊。
只能在真空中使用的单分子流体材料于日常应用无缘,而且提炼和制作费用不菲,注定是曲高和寡。当时这款新材料被研发人员发明出来,先是引起惊喜,可是经过应用性测试后期望值大跌,商业化难度太高,只能归入公司的技术储备库。
好在陈文浩让小卡随时监看着研发条线,才没有让这项技术在技术库里闲置,这无疑是目前能找到的最佳太空站能源材料。同时,在陈文浩的要求下,早就开始了生产和储备的工作,但经过近半年的积累,也就堪堪存够了100公斤的量,可见其生产的难度。
出于方便运输和释放的原因,等到八架圆心飞船建成后,这宝贵的100公斤新材料将被密封在特制的容器里,集中存放在一架飞船上,并将于飞船成功拼接后开始释放。
100公斤的单分子流体材料将以薄膜形式在太空中释放,形成一块薄如蝉翼,展开面积达到1