数学新发展》说的那些都太模糊、太代数化了。”
图灵也来了?前段时间这个曼彻斯特大学计算机实验室的副主任用他那新搭建的“马克1号”帮忙多萝西重新整理实验数据......
对于这个计算机大神的小问题,周启仁稍微想了想,微笑道:“这些叶状结构的叶子覆盖了从流形到它的幂零流形的映射图像。幂零流形就是从基本群的高阶幂零子群出发构造的流形。这其实是把利用同调来构造的到高维环面的阿贝尔映射推广成幂零的情形,仅仅是ElieCartan的dd=0的对偶形式中的Jacobi关系.......”
周启仁很快给出了彻底的解决方法,并且给出了完整的解释。对于他来说,这些只是很初等的东西,涉及的几何知识也不多,
李群理论在最初的相当长一段时间内仅与一些微分方程的积分有联系,而与数学的其他分支关系不大。在19世纪的最后10年以及20世纪,李群理论在各种不同方向,主要是代数学和拓扑学方面得到了迅速的发展,成为数学的一个重要分支。李群理论的第一个近代化的叙述是由原苏联数学家庞特里亚金于1938年给出的。
周启仁的出现,李群理论的发展进入了一个新的阶段,主要标志是数学大统一下的代数群论的创立。代数几何方法的应用使李群理论的经典结果得到新的阐述,从而揭示了它与函数论、数论等理论的深刻联系。事实上,李群理论与数学的几个主要分支都有联系:通过李变换群与几何学、拓扑学的联系,通过线性表示论与分析的联系等。李群在物理学和计算机中也有着重要应用。
图灵的抛砖引玉,台下几个带着绅士帽的专家开始对周启仁发起了攻击,“托尼周博士,你在最新一期《数学新发展》中提到的那个二阶非线性偏微分方程,Weyl规范理论中的相因子可以推广到李群中的元素,那么4维时空旋量的WeylSL(2,C)到底是如何表示与推广的?”
提问者说的这个二阶非线性偏微分方程就是大名鼎鼎的杨米尔斯方程,不过在《数学新发展》的增刊里,周启仁把这个数学模型改成了“托尼周方程”,在“数学大统一论”下,将量子电动力学的概念推广到非阿贝尔规范群,将原本可交换群的规范理论(应用的量子电动力学)拓展到不可交换群,以解释强相互作用。
一来就问这么高深的问题,周启仁不由瞥了一眼提问的黑边眼镜老年人,再仔细瞧了又瞧,这个提问者貌似是建立波动力学的薛定